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Abstract Mathematical modeiling in the natural and engineering sciences is most often dominated by a philosophy of
deterministic reductionism. Moreover, many of the ‘simulation’ models that emerge from this approach to modelling are very
large and so difficult to identify, estimate (i.e. calibrate) and validate in nigorous statistical terms. In this situation, it seems
sensibie to consider alicmative modelling strategies which averntly acknowledge these data-based modelling difficullies and address
the very real problems of calibration and validatien associated with the dynamic modelling of complex systems. This paper will
oudine 2 Data-Based Mechanistic {DBM) modelling philosophy and its associated methodological approaches 1o the analysis and
modelling of data from environmental, eological, economic and engineering sysiems. Here, the model structure is first identified
and estimated, as objectively as possible, from the available data and the resuiting model is only then interpreled ina
scientificatly acceptable and physically meaningful manner. This can be contrasted with the more conventional approach to model
puilding in which the mode! structure is first defined on the basis of the scientist’s perceplion of the system and then this model
structure is used as the basis for estimation and validation exercises. The paper will discuss a number of practical examples
tncluding: extracting simplicity out of complexity in a large, nonlinear simulation model of the global carbon cycle used in
climate change rescarch; nonlinear rainfall-flow modelling, modelling the nonlinear feedback mechanism between blowflies and
sggs in the Nicholson blowfly data; evaluating the possible causes of unemployment in the USA over the period 1948-1988; and
the modelling and automatic control of the Harrier VETOL Alrcraft.

i INTRODULCTION

As we look around us, we perccive complexily ia all
directions: environment, biological and coolopical systems,
national economics, and some of the more complex
engingering systems - they all appear to be complicated
assemblages of intcracting processes, many of which are
inherently nonlinear dynamic systems, often with
considerable uncertainty about both their nature and their
inlerconnections. §t is nol too surprising, thereforg, that the
mathemalical models of such systems, as construcied by
scientists, social scicntists and engineers, are often similarly
compiex. What is surprising, however, is the apparently
widespread belief that such sysiems can be described very
weil, if not exactly, by determinisiic mathematical
equations, with litlle or no quantification of the associated
ungertainty. Such deterministic reductionism  leads
incxorably to large, nonlinear simulation models which
rellect the popular view that complex systcms must be
described by similarly compicx models.

In the present paper, we present a different Data-Based
Mechanistic (DBM) modelling philosophy which is almost
the antithesis of deierministic reductionism. It is a
philosophy built on our previous experience with the
modelling of complex syvstems and cmphasises the
imporiance of parameirically efficient, low order. dominant
maode models: as well as the stochastic methods and
slatistical analysis required for their idemtification and
eslimation. This approach (o medceiling is iliustrated by five
practical examples ranging {rom the characterisation of

winfall-flow dynamics for the purpose of Nood forecasting, io . .

the modelling and aslomatic control of the Harrier V3TOL
aircrall. While these examples reject the concept of
deterministic reductionism as the major approach to
modelling. they recognise the value of simulation models
and reductionist thinking in the overail modelling process.

'Mote, however, that ceonometricians, ualike many physical
and natural scienlists, cannot be accused ol ignoving
wncertainty: cconomelric models are inherently stochastic,
alheil often based on methods which are overly based on the
concents of mullivariate regression analvsis

Mare importantly, however, they stress the importance of
explicitly acknowledging the basic uncertainty that is
gssendial to any characterisation of physical, chemical and
piological processes, and argae for the greater ulilisation of
data-based statistical methods in the modelling of complex
natural and man-made systems.

'2. DATA-BASED MECHANISTIC MODELLING

Previous publications (Young, 1978, 1983, 1992, 1993
Young and Minchin, 1991; Young and Lees, 1993; Young
and Beven, 1994; Young er «f, 1996) illusirate the
evolution of the DBM philosophy and its methodological
underpinning. This gencral approach is built on the
assumption that ihe dynamic modeliing of complex systems
should involve two basic model types: speculative and
normally quite complex simulation models which represent
the current, state-of-the-art, scientific understanding of the
sysiem; and Dafa-Based Mechanistic {(DBM) models
obtained initiaily from the analysis of observational time-
series but only considered credible if they can be inlerpreted
in physically meaningful terms. The objective statistical
dernivation of these much simpler DBM models contrasts
with the rather subjective formulation of the complex
simulation modeis, However, the two, apparcnily quile
different types of model are brought together in a rather
nove! phase of the analysis where the DBM methodology is
used to simultanecusly lingarise and reduce the order of the
complex simuiation model, so exposing s “dominant
modes’ of dynamic behaviour. This can then become a

. prelude. io. ihe. final DBM modelling of the system from

actual observational data sets obtained by monitoring the
real system, cither during ifs normal operalion or,
preferably, via planned experimentation.

The DBM phitosophy and ils associated mcthod-
ological tools are discussed in the above references.
However, the three major phases in the modelling strategy
are as follows:-

t. Inthe initizl phases of modelling, observational data
may well be scarce, so any major modelling effort
will have i¢ be centred on simuiation modelling,



normally based initially on deterministic concepts,
such as dynamic mass and energy conservation. In
the proposed approach, which is basically Bayesian
in concept, these deterministic simulation equations
are converted into a slochastic form by assuming
that the associated paramelers and inputs arc
inherently uncertain and can only be characterised in
somg suitabrle stochastic form, such as a probability
distribution function (pdf) for the parameters and a
time-scries model for the inpuis. The subsequent
slochastic analysis uses Aonte Carlo Simulation
(MCS} in 3 ways: {irst, to explore the propagation
of uncertainty in the resulling stochastic model;
sccond, as a mechanism for Generalised Sensitivity
Analvsis (GSA)Y to identify the most importiani
parameters which lcad to a specified modet
behaviour; and third, the use of MCS in stochastic
optimisation

2. The initial exploration of the simulation model in
stochastic terms can reveal the refative imporance of
differenl pans of the model in explaining the
dominant behavicural mechanisms. This under-
standing of the model is further cnhanced by
employing a novel method of combined statistical
tincarisation and model order reduction applied to
time-serics data obtained from planncd experiment-
ation not on the system itself but on the simulation
muoeded which, in ¢ffect. becomes a surregate for the
real system. This rather unusual Dominant Mode
Analysis {DMA) is exploiled in order 1o develop
low-order, dominant modc approximations of the
stmulation model. approximations that are ofien
able to explain iis dynamic responsc characteristics
to a remarkably accurate degree {e.g. cocfTicients of
delenmination > 0.99). Conveniently, the statistical
methods used for such lincarisation and order
reduction exercises are the same as those used for the
DBM wodelling from real time-series data that
foliows as the next stage in the modelling process

3. The DBM methods were developed primarily for
modelling systems {rom normal obscervational time-
scrics data obtained from monitoring exercises {or
planned experimentation, if this is possibie) carried
out on the real system. In this stage of the proposed
modclling approach, therefore, they are used o
enhance the more speculative simulation modelling
studies once experimental data become available. In
this manner, the DBM modecis represent those
dominant modes of the system behaviour that are
clearly identifiable from the observational time-scrics
data and, unlike the simulation models, the efficacy
of the DBM modeis is heavily dependent on the
quality of these data. This is, of course, both their
strength and their weakness in practical torms.

Nole that this approach emphasises the imporance of
obscrvational data obtained from experiments or monitoring
exercises on. the real sysiem and the nced, wherever
possible, to carefully plan such “dynamic experiments’ {sce
e.g. Goodwin and Pavoe, 1977} so that the dominant modes
of system behaviour are clearly identifiable from these data.
in this Iatler connection, the concept of scale in the
measurcments is very important for both data-based and
simulation modeliing. 1t is clearly not sensible to assume
that a phyvsically meaningful “parameter” measured at the
micro-scale (where “micro’ is, of course. relative (o the size
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of the complete system) is the same as that which might be
applicable at the aggregative, macro-level. DBM modelling,
whether it is applied dircctly to real time-series data or used
for developing simple, dominant mode representations of a
large simulation model, yields mathematical relationships
that are directly related o the scale of the time-series
measurements used in their derivation. This needs to be
acknowledged carefuily when drawing deductions from the
modelling results and interpreling the mode! in physically
meaningful terms,

3. ILLUSTRATIVE PRACTICAL EXAMPLES

In practice, it is not always possible 1o exploit the whole
DBM approach to modelling outlined in the previous
section. Sometimes, as in the case of global carbon cvele
modcls, lime series daia are scarce and il is necessary 1o
concenirate on the {irst two, speculative modelling stages.
On the other hand. in applications such as rainfali-flow
modelling, data arc ofien plentiful and Now forecasting
applications, for instance, require ondy minimal order DBM
models, thus largely negating the need for the first two
stages. For this reason, each of the illustrative examples
discussed in this section of the paper have been selecied Lo
show, in their different ways, how the analyst is able 1o
select, from the overall DBM meodelling strategy. only those
methodoiogical procedures thal most suit the defined
objectives of the example being considered.

3.1 Global Carbon Cyole (GCC) Models

At present, the main method usced for rescarch on global
warming is the construction of compuier-based mathematical
models. Although such models can be of a very simple,
empincal type, there seems 1o be a preference, amongst the
scientific community stadying climate change, for moere
complex and normally deterministic, dynamic simulation
models. The most complex, costly and wefl known of these
are the General Circulation Models (GTMs) whose mass
and energy conservation equations, in the form of distributed
parameter, partial differential cquations, are so complex that
they need (o be solved by some form of numerical
approximation in a super-computer. Rather less cemplicated
but stilt of quile high dynamic order are the Global Carbon
Cycle {GCC) modeis. Here, the movement of carbon in the
giobal environment is described by a set of dynamic mass
and/or energy conservation rclationships in ithe form of
lumped parameter, ordinary differential equations.

In this sub-section, we consider a typical deterministic,
non-lincar GCC model developed by Enting and Lasscy
{1993, hereinafter referred to as the EL moedel) on the basis
of an original box-difTusion model suggesicd by Ocschger ef
al (1975). This 23rd order model is typical of ihe non-GCM
models used by the Inter-governmental Panel on Climate
Change (IPCC), the body scl up to assess current scientific
ihinking on climaic change and to advise on inernationally
co-ordinated policy in this area, The model is undoubicdly
speculative but, despite the many uncenainties that underly
its formulation. it is lotally deterministic: the concept of

-uncertainty - enters the analysis only when the model

predictions into the next millennium are considered over a
range of possible fuure detlerminisiic scenaros: cach of
which. by definition, is speculative.

in this situation. Young ef af {1998) conceniraic on the
first two stages in DBM modeliing. The uncertaintics in the
modcl paramciers and inputs required for the MCS analysis
were obtained by refersnce to the iatest literature on the
subject and from information suppiied by scientists working



on global climate change. Table 1 compares the uncertainty
measures associated with the EL model predictions of
atmospheric CO, in the year 2100, as gencrated by the
MCS analysis in the case of the IPCC scenario 1S492a; and
compares them with results obtained in well known
deferministic scenario siudies using large simulation
models, including the EL model

Table 1

Year § Uncenainty | Range wModelling Source
in CO, | {ppw)
{ppmy)
2100 ¢ 607 10 719 52 (PCC (1994)

740 o B0 6 Wigley & Raper (1992)

61510 683 &8 Enting & Lasscy (1993)
664 1 144 288 original MCS results
665148 96§ MCS results with reduced

uncerainty
Tablo 1 companson of (he uacenainty in fture CO; levels
due to IPCC scenario 1592a between three deterministic
modelling exercises and the MCS metheds used here.

The original MCS resulis show that the stochastic
unceriainly is maoch larger than the range of variability found
in the other studies. in order to avoid crilicism that the
sciccted uncertainly bounds on the paramcters werc unfair
(see Parkinson and Young, 1997), the MC3 analysis was
repeated with various modification, including considerable
reduction in the parametric and inpul uncerainties. The
resulls of this revised simalation are also shown in Table |
and, although the predictive uacertainty levels are much
reduced. they remain 50% wider than the widest of the
delerministic resulis. This is a sigaificanl amount:
morcover. it would probably be larger still if the slochastic
methodology could be applied to 4 complete set of global
cashon cycle models. as in the IPCCs comparison of
deicrministic simuiation studies.

To carey out the DMA, the full, non-linear EL model is
initiatly set to an cquilibrium condition with the (pre-
industrial) atmospheric €0, conceniration set al 275 ppmv.
Tien a smail impulsive periurbation in the fossil fuel mput
is applicd o the model and the resulting response is
monitored over a period of 3000 years. The statistical
identification and cstimation analysis, using Simptified
Refined Instrumental Variable (SRIV) methods of linear
mode! identification and cstimation (sce Young et af, 1996,
and the rcferences therein). viglds the 3th order. linear
transfer function model, one interprelation of which is as 2
paralict conncction of three, first grder systems and an
integrater {the latter is reguired because of the mass
soenservation assumption in the EL model). This simple
dynamic mode! explains aimost all {99.98%) of ihe
simulaicd model response (ie. the Coefficient of
Determination (COD) based on the model oulpul civors

R7=0.9998). More significanty. Figure | compares the

response of this il order model with that of the fuli, 23rd
order, non-lincar model over the entire industrial period. As
can be sceu. the error is very smalll never grealer than
9 5ppmy. even though the model has moved 45 ppmy
above the operating point a which it was cstimaled.
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Cormparison of maodel responses to fossil fuel input
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Fig.1 Combined mode} linearisation and reduction: comp-
anson between the responscs to fossil fuel inpui of the fourth
order, linear model and the 23rd order nonlinear simulation

modei {crror shown above (4325 ppmv}

These rather surprising resulis show the robusiness of
the low order, dominant mode model and suggest thatl the
nonlinearitics in the original model ase hardly being excited
by these fairly substantial periurbations over the industrial
period. Morcover, further DMA results, at a range of dilferent
operating points, reveal that the objectively identified, 4th
order mode! structure does not change at alli and the
behaviour of the nonlinear model can be reproduced very
closcly, with only small variations in the parameter values.
This is quile a dramatic result which demonstrates the
dominance of a smail number of modes of behaviour ia the
system, as defined by the eigenvalucs of the reduced order,
Tinear mode! at any defined operaling point,

As regards the prediction of atmospheric C(J;, these
results must call into question the need for such a complex
representation of carbon balance in the EL model and
suggests that a much simpler representation with fewer, or at
jcast lower order, sub-systems {e.g. the EL modcl) kas 18
compartmental levels in the ocean sub-system alone) could
have produced very similar results. Moreover, such a
reduced order model would be more appropriate to the
amount of observational data available in this example
which, in itself. makes the assumption of a high order
model rather questionable on statistical grounds. Iadecd.
the EL mode! can only be fitied (o the available data with
constraints applicd to many of the parameters, a common
indicator of severe over-parameterisation,

3.2 Rainfali-Flow Modelling

The noalinear relationship between minfal and flow data has
been characterised mathematically in various ways: by
complex, physicaify-hased simulation models, such as the
Stanford Watershed model (see e.g. Kraijenhoff and Moil,
1986), where the many spatially-disiribuied model
parameters are obtained by rather ad-hoc methods,

sometimes-involving- highly constrained. oplimisation,. . .

through the much more parsimonious conceptual lumped
parameler models of the type suggested by Jakeman ef af
{1990) and Jakeman and Hornberger {1993), where the
maodel structure and parameters have a conventional
hydrologic interpretation but are obtained by more rigorous
statistical estimation procedures {rom the rainfail-fiow data;
1o the DBM medeis of Young er af (e.g. Young, 1993,
Young and Beven, [994).



A typical example of the DBM approach is the modclling of
the data shown in fig 2.

Flow, Rainfall and Temperature Data for a Catchtsient in the USA
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Fig.2 1000 days of flow (top), rainfall {middie) and
temperature {bottom) data from a catchment in the USA.

On the basis of these data, the SRIV algorthm: identifies and
estimates the following, two input, TF model

0.4118~0.2810z7" - 0.04307 ™

=216+
. + 1233027 +0.2952¢0 i
0.0041z"
Tl &

Here u,, is the temperature variation sbout its mean value,
which accounts for scasoual effects; the 2.16 is an apparcntly
constant {(over 1000 days) base flow effect; &, is residual
coloured neise; and uy, is the effective rainfall input, defined
as follows {sce Young and Beven, 1994),

wy=Bor " (1b)
where 7, is the measured rainfall and B is a normalisation
coelficient. This model explains over 92% of the flow series
with Rp=0.922, as shown in fig 3.
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Fig.3 Comparison of TF mode! output ({full) and the
measured flow data (dashed)
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It is interesting to look at this model in its decomposed
paratlel pathway form {the “constant’ base flow term has
been removed for simplicity):
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- 0.1564;™ .
r-pa2szt M
0.0041z7
TS0 0s01z 0

0069477
1-0.9078;"

¥, =0.4118u,, +
@

or in block diagram terms:

uZl :

1-0.9691z"

We now sec that one interpretation of the model is that the
cffective minfall u;, reaches the river and affects the fow via
three pathways, and that the flow is also affected by the
prevailing tempemture varations which, presumably because
of processes such as evapo-transpiration, reduce the flow in
summer when temperature is greater than its mean value {see
the negative sign on the y, summation). The details of the
individual first order TF's in the decomposition (now
including the constant base flow effect) are:

Ingtantancous TF (A)

Root S8G TC Yllow
0 04118 0 294980
East Flow TF (B)

Root S8G TC Yoflow
0.3252  0.2318  £.8902 16.609?2
Stow Flow TF (O)

Root S8G TC Yollow
09078  0.7523 103370 53.8928
slow Temperture (Seasonal) Effect (D
Root SSG TC
(L9681 0.1327 319
Constant Base flow
2.16 (V1)

where 55G and TC denote, respectively, the associaled
steady state gain and time constant {residence time) of the
individual first order TF's. The owpuls of the various
parallel pathways, together with the temperature effect, are
shown in fig4.

To summarise, the TF modelling analysis in this case
provides a “black box” mode! but, by decomposing this
model, we obiain a mechanistic interpretation that makes
physical sense. In particular, it suggests thal the river fow
is composed of 5 components: a very rapid. instantaneous.
{r.e. within one day) effect; a *fast flow” component with
residence time 0.89 days; a *slow {low” component with
residence time 10.34 days; and a very slow, “base flow’
component consisting of a ‘constant flow’ (2.16 mm:
constant over the 1000 days of data); and a temperature
dependent component (the lemperature varations aboul the
mean passed through a TF with time constant 31.9 days),
which appears o account for long tern temperature
dependent effects, such as these arising from evapo-
transpiration processes. Moreover, the TF's associated wilh



“fast’ and ‘siow’ flow paralle! pathways can be interpreted
as a dynamic mass balance or storage equations {see Young
and Beven, 1994).

Flaw Decomposition Inferred Frow Paraliel Flow TF Model
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Fig.4 Decomposition of the flow, as inferred from the para-
licl pathway model {note all flows are to the same scale)

Rainfall-flow models such as (1) are not only usefut for
gaining an improved undersianding of the nonlinear
catchment dynamics and atiowing the hydrologist to
guaniitatively decompose the flow into surface and
‘baseflow’ components {e.g. Jakeman er af, 1990), they also
provide a valuable tool in the design of flood waming and
forecasting systems {e.g. Lees ef al, 1994, Young e! al,
1997a).

3.3 The Micholson Blowfly Data

Over a number of vears, Nicholson (see c.g. 19534 collected
data from a series of experimenis invoiving captive colonies
of the Australian sheep blowfly, Lucifia cuprina. These
data. which are reconds of the vadations in the numbers of
cggs, larvae and adult blow(lies over extensive time periods.
have becn analysed by numerous ecologists and
mathematicians in the intervening period of time. In contrast
to these carlier studies, which tend to concentraie mainly on
the nondinear behaviour of the blowflies. the DBM approach
used here considers (he complete egg-blow{ly system and
evolves a nonlinear model relating the eggs and blowflies
within a closed. nonlinear. feedback loop.

The best known of Micholson's data scts® is shown i
fig 5. Thesc dala were oblained with the blowllics subjected
10 a limited food supply of .5 g/day ground liver and fig.5
suggesis classic, nonlinear, limit cycle behaviour The
DBM analysis begins with the identification and eslimation
of the ‘forward path’ dynamics between the eggs and
blowflics, where a lincar relationship scems most likely,
SRIV identification and estimation confirms a first order
lincar model chamelerised by a 15 day pure time delay
which accouns for egg-larvac development time. [n contrast,
however, Lhe analysis suggests that the feedback dynamics,
defining the egg-iaying behaviour of the blowflies. 1s clearly
noulincar,

2 the original data were fost by MeNeil (1996) and the present
data were digitised from Nicholsons™s oripinal paper. An
carlier paper {Young and Chotal, 1997) used a different
digitised set of data which was fater found to have some
winporal distortion. The present results supersede these carlier
resulis, although there is litle qualitative difference.
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Data-Based Mecharuistic Model:Final Optimised Model Stmutation
FLLES) v + T
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Fig.5 Comparison of the DBM nonlincar mode! output {{ull
line} and the digitised Nichoison data (circles): the blow(ly
varations are shown above and the egg laying rate
variations below.

The DBM analysis outlined here is taken from Young
{1997). The initial data-based nonlinear modeiling method
used to investigate the blowfly-egg dynamics is a non-
parametric estimation procedure based on recursive Fixed
Interval Smoothing (FIS), as discussed in Young (1993}
and Young and Beven (1994). In the top graph of fig.6, the
resulting estimate of the nonlinearity is plotted as circles
with 3x(standard error) band shown dashed: it suggest that
at low blowfly populations the egg production is
approximately propostional to ihe population, while at
higher populations. when the food supply per blowfly is
getting progressively smaller, there is a gradual decrease in
egg production from ils maximum level until very few cggs
are laid each day for blowfly populations greater than about
4000,

Estimated Nonlinearities
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Fig.6 Non-parametiric and parametric estimates of the
‘feedback nonlinearityin the blowfly model.

The middle and lower graphs of fg.6 show a particular
parameterisation of the nenlincarity - this is plotled directly
in the middle graph: and in terms of the food/blowfly and
cggsidaydlowfly, in the lower graph. This parametensed
nontinearity, which consists of a lincar segment for biowlly
populations ¥,<518 {sec below) and an exponential decrease
thercafier. is also plotted as a dash-dot line in the upper
graph, where il can be compared directly with the initial
non-paramelric estimate.



The above results were obtained by fitting the following
nondinear miodel to the cgg-blowfly data using numerical
optimisation based on a simple least squares cost funclion:

Vo= avy b,y
u, = oy,
u, =y, eapl—(v, — v, 3}/ (.M

by, sy, (3)

Ty >y,

Here /s the food supply per day (0.5 g in this case); f,
is the optimum food supply per blowfly, i.c. the per capita
food supply at an optitum blow({ly population v, = [/,
which yiclds the maximum cgg production sate. The
estimated pammaeters arc as follows:

@ = (LR280.002): 5 = 0.7 19(0.032): @ = 3. 74(0.36);
L= 0651077 7x10 )y v, = SIR(16) N = 1885(128)

where the Tigures in parcatheses are the estimaied standard
¢eImors.

The deterministic, limit cycle output of this optinuscd
modet 1s shawn as the full Hee in fig.5, where # can be
compared wilh the Nicholson experimental data. As can be
scen, the model expluing the data well with Rj=0.77 for the
biowflics and R; =0.58 for the eggs. In addition. it can be
independenily validated since Nicholson states that, “The
culture L owas supplied with 0.5 ¢ ground liver per day
and the average densitv was found o be 2520, in another
culture imwhich afl the conditions were precisely the same,
except that oaly 0] g of liver was provided per day for the
adulis, the average densitv of adults was 327 | I the case
of the above model. the average deasity in the casc of 05 g
liver per day 15 2589, and when this is reduced 1o 0.1 g per
day. the average density reduces to 527, Clearly these are in
reanirkable agrecment with Nicholson™s resubis,

Of course, cauation (3} is not the only paramelerisation
that could be used {sce Young. 1997) but it has the vintue of
a clear ecologieal intespretation, which is most unportant in
DBM modelling. For wstance, the parameters o and b
define the averge survival nues of the blowflics (82.8%) and
cpps-tarvae (71999 respectivedy: v, (318) and  f,
(V.6x107) are. in terms of egg production, the “optimal’
blowliy population and food supply rate per blow/ly.
espectively: and the pure fime defay {15 davs) is the time
tiken for the epg-farvac stage in the blowfly life ovele.

3.4 Macro-Economic Relativity: Unemplovasent and
investment in the USA 19451988

Macro—cconomic data are often non-stationary, in the scuse
that they are charactensed by long term stochastic trends
which may have common characieristics. The major current
approach o handling such series 15 the concept of cu-
orteyration (Engle and Granger, 1987). A rccent DBM
maceo-ceonomic modetling study (Young and Pedregal,
P99 7ab) again exploiting non-paranwciric cstinuation based
on fecuesive FIS estimation (as used in the provious blowfly
Cexample). his suggested an afiomaiive approach. in which
the nonestationan scres are eplaced by suitable relativistic
measures, so inducing near-stafiomandy and removing 1he
need for the mclusion of stochastic rends in the model
The study is concemned with modeliing and forceasting
the percentage uncmployment rate v, (itscil a relatvisiic
mgsurey mothe USA over the period 1943-1988, based on
the chianges inrelative private investment RPY, and relative
Government spendiog (.e. public investment) RGY, ., where
both arc wmeasured relative o the Gross National Product
(GNPY. The three senes. based on quarterly measuies, are

shown in {ig.7. I is clear {from these plots that there has
been a reduction of total relative investment
Ri, = RPI, + RGI,, since around 1970, that is due primanly
to the decline of public rather than pnvate vestment
relative to GNP in pasticular, standard statistical tests show
unambiguously that the mean level of RGI, has declined
significantly from a roughly constant level of 24 4820.69%
of GNP in the peried 1955-1969. to 20.07+0.72% of GNP,
in the period 1973-1988; mecanwhile relative private
investment RPI,, whilst very voiatile in the short term, has
remained at a roughly constant mean level (16,6851 .45 % of
GNP) over the whole period.
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Investment RG/, and Relative Private Investment RPY,.

Refined Instrumental Variable (REY) deatification and
estimation {scc Young and Jakeman. 1979; Young, 1984
applied to the data in fig. 7 yiclds the following TF model,

b, RGI + In
t+a L T+a L

1
hl ‘};

+m
ol +venls

RP{

!

where e, 15 voro mean, white noise with vanance o The
full estimation results are reported in Tabie 2. in which Ry
is the COD based on the model outputs; while K- is the
£OD based on the onequaner-ahead prediction erors,

Table 2

Pamameter Eslimate SE T statistic
¢ 10,178 0,901 10.29
G <777 0.028 2812
by -15.081 1734 868
b, 232981 1758 11.96
e T Hory RN
€ 1246 D77 308
o'= VM3 RFSURYY RT=0.965

Steady State Gains:

4

Gy =-07.64, (G,=-147 92

Timwe constant, 1, =3.96 quarers

Tuable 2: Estimated TF model berween US uncmploviment
rate and the motes (o GNP of Private and Public Investment,
The noisc 1s modcelied as an AR¢2Y model.
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Ciearly, the mode! explains the data well and also
produces cxcellent shori term predictions. In addition, it
performs well in long term forecasting terms: fig. 8. for
example, shows the ten-ycar-ahcad nncmployment fate
farecasts produced on the basis of various forecasts of RPI,
and RGI . It will be scen that the best true forccast is
produced using Dvaamic Harmonic Regression {DHR) for
these imput variables: 1his is another methodological took
(see e.p. Young. 1988 Young e/ al, 1989, Young ef al,
1997h) that often proves very useful in DBM modelling
studies, where it can provide an explanation for nen-
stationary periodic and quasi-periodic senies and effects.

Fovecnsts of TF medsl fe US4 Unemployment Rate {circles)
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Fig.% Uncmployment Rate in USA (circies) compared with
forecasts when: (a} the actual values of the explanatory
varigbles are used (fuil); (b} they are forecast using DHR
maodels (crosses); {¢) they are assumed © remain constant at

their local mean level before the forecast onigin (dashed),

Although it leads 1o ar exccllent explanation of the data and
produces good forecasts, the analysis presenfed in this paper
docs not, of course, prove that the modelled relationships
are cansal: it is extremely difficslt, if not impossible, to
prove that causative mechanisms exist between £CONOMIC
variables because the variables arc simply observed
(measured) passively during the normal operation of the
system, and planned cxperiments, which could remove the
ambiguily, are not possible, Bui. at the same time and for
the same reasons, causality can rasely be disproved and so it
is very important 1o acknowledge the possibility, as revealed
by our analysis, of a causal conncclion and to take this into
account in risk-sensitive economic planning. particularly if
the data-based conjecinre conforms with some important
aspeet of cconomic theory. This linking of the model with
theory is the imporiant iast slage in DBM modclling: no
maller how well the tme series model explains and forecasts
the dala, H cannot really be considered fully credible in a
truly scientific scmse unless i can be interpreted in
meaningful physical {here macro-gconomic) ferms. in the
prescht case, theeefore, ¥ is fortunaie that the model appears
1o conform well with certain aspects of Kevnesian economic
theory. as discussed in Young and Pedregal {1997b).

3.5 Autostabilisation of the Hurrier YSTOL Abreraft

The final example is concerned with the design of an
advanced automatic conirol sysiem for the Harrier Verntical
and Short Take 9T and Landing (V3TOL) atrcraft in Hs
mosi difficuit lransitional mode belween hovering and
noemal flight (Cheotai er af, 1997). This dosign sindy 38

based on a realistic, high order differential cquaiion model in

Simulink. characterised by nonlinear actuator dy namics, with
both amplitude and raie limits, ag well as sensor dynamics
which include additional pure time delays, The design
chicclives are o obiain a fast reacling. dynamically
decoupled. closed loop sysiem which is siable within a
selatively wide range of command input values and {unctions
well even when the amplitude and rate Himits arc activated.
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In this example, where the design is based on the high
order nonlinear simulation model rather than experimental
data from flight tests, the identification and estimation
analysis is used for simultancous model lincarisation and
reduction based on simulation experiments {as discussed in
section 3.1). Once again, SRV identification and estimation
(this time using the delta operator form of the algorithms:
see Young et al. 1991) consistently provides well defined,
low {Tth) order, linear “dominant mode’ control modeis
which explain almost all of the. nominally nonlinear,
simulation model data for a fairly wide range of inpul
amplitudes (i.c. coefficients of determination RE=1)

The conirol system design methods utidised in the
study arc based on techniques developed in the Sysicms and
Control Group of CRES over a number of years (Young et
al. 1987, 1991, 1997¢; Chotal ef af. 1997). This involves a
Non-pinimum State Space (NMSS) approach, which results
in a multivariable Proportional-Integral-Plus (PIF) control
system that provides a logical, optimal development of
coaventional PID controllers. In this case, the design
requircments ate very demanding and a multi-objective
optimisation method has been utilised to extrct maximum
performance from the PIP condroller (see Chotai et af, 1997).

Fig. 9 shows the closed loop response 16 a unit slep
pitch attitude command input. The top graph is the pitch
channel output response, along with the other two.
dynamically decoupled outputs (forward and vertical
velocity) plotted to the same scale. The three graphs below
this plot show the control inpul values, all of which are
aclive in ensuring the decoupled response. Note that these
resulls were obiained using the fill non-linear siniilation.
rather than the lincar, reduced order model used in the
multi-ohjective oplimisation stage of the design analysis.
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Figure 9. Response of PIP controlied atrcralt 10 a command
step input on pitch attitude.

Clearly, the design objectives. Le. relatively fast and
decoupled responses, have been achieved. The command
step size is the same as that used for optimisation, and the
actuator amplitude and rate limits are not exceeded. A

. number.of additional closed loop nonlinear simulation 1Csts,

inclading step and random (gust) load disturbances, as well
a5 changes in the parameters of the rigid body parl of the
non-lincar modcl. have shown that the closed loop
behaviour is robust to such effects. If larger command input
signals are appled. the inpui signals can excecd the
amptitude and rate limits but the PIP system continucs to
perform well, with only a smatl decrease in performance
under these conditions.
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